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Abstract 

Problems in harmonic analysis and synthesis are intertwined with their applications in signal and image 
processing. Some recent advances in the theory of this analysis have used number theory to extend existing 
theories (e.g., sampling theory, fast computations) and develop new approaches to problems (e.g., inter- 
polation). An area that has benefited from the blend of number theory and harmonic analysis is that of 
parameter estimation. This is the main area of focus for our work in this grant. 

Our developments in the theory on the Riemann Zeta Function and algorithms on extensions of Euclidean 
domains have led to new computationally straightforward algorithms for parameter estimation from sparse, 
noisy data. Robust versions have been developed that are stable despite significant jitter noise and the 
presence of arbitrary outliers. 

We have continued the development of the theory, including the development computationally straight- 
forward techniques for spectral analysis of a very broad class of periodic processes, including procedures so 
that estimates achieve the Cramer-Rao bound. We have extended these techniques to the complete analysis 
of zero-crossing data and multiply periodic point processes, including the recovery of the fundamental pe- 
riod^), phase information, the multiples of the periods, and the deinterleaving of the data. The algorithms 
will work on data from currently deployed sonar, radar, and communication systems. We have also applied 
our techniques to other data sets containing sparse noisy information generated by a periodic process, e.g., 
the geometric pattern generated by minefield placement. 

The mathematical techniques used in our work on parameter estimation was also applicable to another 
fundamental area of signal and image processing, that of deconvolving a given signal from the sensor that 
gathers it. This approach has been labeled multichannel deconvolution. It circumvents the ill-posedness in 
the single channel approach by overdetermining the input signal using a system of strongly coprime impulse 
responses. We have also continued the development of several aspects of this theory, including applying our 
theory to develop systems in which complete signal information can be recovered. We also have extended 
the theory to more general system models, and create a basis in which to develop the multichannel theory 
which is more amenable to discretization. We also have coordinated the theory with filtering systems for the 
removal of noise and/or other unwanted information, and with irregular sampling theory and wavelet and 
Gabor analysis. Our work on multichannel deconvolution has also led to a new approach to sampling theory. 
We have developed specific examples of non-commensurate sampling lattices, and used a generalization of 
B. Ya. Levin's sine-type functions to develop interpolating formulae on these lattices. We are exploring an 
extension of these ideas to create non-commensurate systems of wavelet bases. 

We close with an additional general mathematical result. As is well known, a function / with a positive 
derivative Df on an interval is increasing on that interval. We explored the extent to which the hypotheses 
of the Mean Value Theorem can be weakened and / still shown to be increasing. By constructing counterex- 
amples using Cantor sets, we showed that the assumption Df > 0 a.e. does not imply that / is increasing. 
Then we showed that if Df > 0 except on a countable subset of an interval, / is increasing. We call this the 
Countable Exceptional Set Theorem. This theorem is generalized by the Goldowsky-Tonelli Theorem, which 
tells us that if Df exists except on a countable subset of an interval and Df > 0 a.e., then / is increasing. 
However, we then showed, in a very natural sense, that Goldowsky-Tonelli is a vacuous extension of the 
Countable Exceptional Set Theorem. 



1    Introduction: An Overview of Results 

Problems in harmonic analysis and synthesis are intertwined with their applications in signal and image 
processing. Some recent advances in the theory of this analysis have used number theory to extend existing 
theories (e.g., sampling theory, fast computations) and develop new approaches to problems (e.g., inter- 
polation) . An area that has benefited from the blend of number theory and harmonic analysis is that of 
parameter estimation. As discussed in our proposal, our work for this grant focused on parameter estimation. 
However, we also did some work in additional areas and include a brief discussions of these results. 

Our developments in the theory on the Riemann Zeta Function and algorithms on extensions of Euclidean 
domains have led to new computationally straightforward algorithms for parameter estimation from sparse, 
noisy data. Robust versions have been developed that are stable despite significant jitter noise and the 
presence of arbitrary outliers. 

We1 have continued the development of the theory. Particular items include: 

i.) Developed computationally straightforward techniques for spectral analysis of a very broad class of 
periodic processes, including procedures so that estimates achieve the Cramer-Rao bound [21, 22, 23, 
24, 41, 43]. Our techniques of parameter estimation fit models of currently deployed sonar, radar, and 
communication systems. 

ii.) Extended these techniques to the complete analysis of multiply periodic point processes, including 
the recovery of the fundamental period(s), phase information, the multiples of the periods, and the 
deinterleaving of the data [21, 24]. 

iii.) Employed these techniques to estimating the period of a sinusoid from zero-crossing data. These 
techniques are applicable to sparse data sets on which conventional techniques break down. This work 
includes two new derivations (analytic and geometric) of the Tretter approximation [42, 44]. 

iv.) Apply our techniques to other data sets containing sparse noisy information generated by a periodic 
process, e.g., the geometric pattern generated by minefield placement [36], 

Parameter estimation problems in periodic point processes arises in radar pulse repetition interval (PRI) 
analysis, in bit synchronization in communications, in neurology and astronomy, and many other scenarios. 
Again, simulation work indicates that our algorithms can be easily implemented into models of actual systems 
to perform this analysis. This work is directly applicable to Navy technologies. For example, it will provides 
new procedures for period estimation and/or the deinterleaving of radar and sonar data, and synchronization 
for frequency hopping communications. It is also applicable to a variety of other problems, from the analysis 
of general time series data to the detection of geometric regularities, as might arise in minefield detection. 

The mathematical techniques used in our work on parameter estimation was also applicable to another 
fundamental area of signal and image processing, that of deconvolving a given signal from the sensor that 
gathers it. This approach has been labeled multichannel deconvolution [10]-[19]. It circumvents the ill— 
posedness in the single channel approach by overdetermining the input signal using a system of strongly 
coprime impulse responses {/u,}. We then filter the output of each channel by the deconvolvers {v;} which 
satisfy 6 = ßi * v\ + ... + \in * vn. This in turn allows for the recovery of the input signal. 

We have continued the development of several aspects of this theory, including applying our theory to 
develop systems in which complete signal information can be recovered. We also have extended the theory 
to more general system models, and create a basis in which to develop the multichannel theory which is 
more amenable to discretization. We also have coordinated the theory with filtering systems for the removal 
of noise and/or other unwanted information, and with irregular sampling theory and wavelet and Gabor 
analysis. This work is applicable to Navy technologies in that it provides new theoretical basis for the 
development of active and passive remote sensing systems which gather all possible information in a noisy 
environment. Moreover, the systems can be designed to do a simultaneous signal recovery and analysis. 

Our work on multichannel deconvolution has also led to a new approach to sampling theory. Solutions to 
the analytic Bezout equation associated with certain multichannel deconvolution problems are interpolation 

1The editorial we is used throughout the report. The results are by the PI, and where noted, various co-authors. 



problems on unions of non-commensurate lattices. These solutions provide insight into how we developed 
general sampling schemes on properly chosen non-commensurate lattices. We have developed specific exam- 
ples of non-commensurate sampling lattices, and used a generalization of B. Ya. Levin's sine-type functions 
to develop interpolating formulae on these lattices. We are exploring an extension of these ideas to create 
non-commensurate systems of wavelet bases. 

We close with an additional general mathematical result. As is well known, a function / with a positive 
derivative Df on an interval is increasing on that interval. We explored the extent to which the hypotheses 
of the Mean Value Theorem can be weakened and / still shown to be increasing. By constructing coun- 
terexamples using Cantor sets, we [20] showed that the assumption Df > 0 a.e. does not imply that / is 
increasing. Then we showed that if Df > 0 except on a countable subset of an interval, / is increasing. 
We call this the Countable Exceptional Set Theorem. This theorem is- generalized by the Goldowsky-Tonelli 
Theorem, which tells us that if Df exists except on a countable subset of an interval and Df > 0 a.e., then 
/ is increasing. However, we then showed, in a very natural sense, that Goldowsky-Tonelli is a vacuous 
extension of the Countable Exceptional Set Theorem. 

The report is organized as follows. In section 2, we give a discussion of our work on parameter estimation. 
Section 3 is a brief discussion of the theory and applications of the deconvolution theory. The section 4 gives 
an overview of our work with derivatives. 

2    Parameter Estimation 

2.1    Recent Results 

In this section, we gather our results in parameter estimation, which have appeared in several very recent 
papers. Many of the Pi's results on the subject appear in [23] - "Modifications of the Euclidean algorithm for 
isolating periodicities from a sparse set of noisy measurements," IEEE Transactions on Signal Processing, 44 
(8), 2260-2272 (1996) - [24] - "Number theoretic methods in parameter estimation," Proceedings of IEEE 
Workshop on Statistical Signal and Array Processing, 406-409 (1996) - [21] - "Sampling issues in least 
squares, Fourier analytic, and number theoretic methods in parameter estimation," 31st Annual Asilomar 
Conference on Signals, Systems, and Computers, 453-457 (1998) - [43] - "On periodic pulse interval analysis 
with outliers and missing observations," to appear in IEEE Transactions on Signal Processing, 31 pp. - 
and [44] - "Frequency estimation via sparse zero crossings," submitted to IEEE Transactions on Signal 
Processing, 11 pp. Variations on these results can be found in [22], [41], and [43]. Also see [36] - "Detecting 
regularity in minefields using collinearity and a modified Euclidean algorithm, Proc. SPIE, 3079, 8 pp. 
(1997). 

Modifications of the Euclidean algorithm were presented for determining the period from a sparse set of 
noisy measurements in [22], [23]. The elements of the set were assumed to be the noisy occurrence times of a 
periodic event with (perhaps very many) missing measurements. This problem arises in radar pulse repetition 
interval (PRI) analysis, in bit synchronization in communications, and other scenarios. The algorithms are 
computationally straightforward and converge quickly. A robust version is developed that is stable despite 
the presence of arbitrary outliers. We model the set of measurements of a periodic process as follows. We 
assume our data is a finite set of real numbers 

S = {sj}]=i, with Sj = kjT + (j> + rjj, (1) 

where T (the period) is a fixed positive real number, the kj's are non-repeating positive integers, <p (the 
phase) is a real random variable uniformly distributed over the interval [0, r), and the ?7j's are zero-mean 
independent identically distributed (iid) error terms. We assume that the rjj's have a symmetric probability 
density function (pdf), and that \r]j\ < ^ for all j. We develop an algorithm for isolating the period of 
the process from this set, which we shall assume is (perhaps very) sparse and noisy. In the noise-free case 
our basic algorithm, given below, is equivalent to the Euclidean algorithm and converges with very high 
probability given only n = 10 data samples, independent of the number of missing measurements. We 
assume that the original data set is in descending order, i.e., Sj > Sj+\. 



Modified Euclidean Algorithm 

1.) After the first iteration, append zero. 
2.) Form the new set with elements Sj — Sj+\. 
3.) Sort in descending order. 
4.) Eliminate elements in [0,770] from end of the set. 
5.) Algorithm is done if left with a single element. Declare f = si. If not done, go to (1.). 

Simulation examples demonstrate successful estimation of r for n — 10 with 99.99% of the possible 
measurements missing. In fact, with only 10 data samples, it is possible to have the percentage of missing 
measurements arbitrarily close to 100%. There is, of course, a cost, jn that the number of iterations the 
algorithm needs to converge increases with the percentage of missing measurements. 

In the presence of noise and false data (or outliers), there is a tradeoff between the number of data 
samples, the amount of noise, and the percentage of outliers. The algorithm will perform well given low 
noise for n = 10, but will degrade as noise is increased. However, given more data, it is possible to reduce 
noise effects and speed up convergence by binning the data, and averaging across bins. Binning can be 
effectively implemented by using an adaptive threshhold with a gradient operator, allowing convergence in a 
single iteration in many cases. Simulation results show, for example, good estimation of the period from one 
hundred data samples with fifty percent of the measurements missing and twenty five percent of the data 
samples being arbitrary outliers. 

Our algorithm is based on several theoretical results, which we now present. The first allows for a 
modification of the basic Euclidean algorithm. 

Proposition 2.1 ([23]) 

gcd(T-ki,...,T-kn) =T-gcd((ki -k2),(k2-h),...,{kn-i -kn),kn). (2) 

We then show that our procedure almost surely converges to the period by proving the following very 
interesting result. Recall that Riemann's Zeta Function is defined on the complex half space [z € C : ^R(z) > 
1} by C(z) — J2^=i n~z■ Euler demonstrated the connection of £ with number theory by showing that 

00 1 

^)=n1_(p.w.^)>i. 
,•=1- k 

where P = {pi,P2,P3, •• •} = {2,3,5,...} is the set of all prime numbers. In the following, we let P{-} denote 
probability, card{-} denote the cardinality of the set {•}, and let {1,... ,l}n denote the sublattice of positive 
integers in R" with coordinates c such that 1 < c < I. Therefore, Nn(£) = card{(fclt..., kn) € {1,..., £}n : 
gcd(fci,..., kn) = 1} is the number of relatively prime elements in {1,..., £}n. 

Theorem 2.1 ([23]) For n>2, we have that 

JS.^4-'«"»"1- <3) 

Therefore, given n (n > 2) randomly chosen positive integers {fej,..., kn}, 

P{gcd(fc1,...,U = l} = [C(n)r1. (4) 

The convergence of the procedure to T is rather quick. 

Proposition 2.2 ([23]) Let u € (l,oo). Then 

lim [CM]-1 = 1, (5) 
W—»OO 

converging to 1 from below faster than (1 — 21~w). 



In order to illustrate the behavior of the algorithm consider the following example. Let the set S of 
equation (1) be generated as follows. Let r = 1, n = 100 data samples, the jumps in the kj's be randomly 
selected from a discrete uniform distribution on the interval [1,10], and the noise be iid and uniformly 
distributed as fv{rj) ~ W[—0.1,0.1]. A data set S was generated according to these parameters and used 
as input to our algorithm. Consider the results after one iteration, in which the data has been differenced 
and sorted into descending order, as plotted in Figure 1. The data are clustered into "steps" around integer 
multiples of r = 1. That the steps are all of the same approximate length is due to the uniform distribution 
in the jumps of the kj's in the original data set S. Other distributions will result in different proportions. 
From the structure of the data and the assumptions on the noise we know that the data has a mean that 
is an integer multiple of r given by (kj - kj+i)r, with noise symmetrically distributed around, this mean. 
This suggests isolating each step and averaging the data within each step to reduce noise effects. 

A straightforward method for clustering the data is to employ a gradient operator to determine when a 
step has occurred. After the first iteration (as in Figure 1) the gradient is estimated, with large gradient 
values indicating a step or "edge" in the data. We have employed a simple estimator by convolving with an 
impulse response given by [—1,0,1]. This operator is well known in signal and image processing, e.g., see 
Jain [29]. A data-adaptive gradient threshold 50 is selected as 10% of the maximum gradient value, and data 
points above this threshold are assumed to correspond to the step edges. After the steps have been isolated 
the step heights are easily found, and the minimum step height, call it f, is taken as a coarse estimate of 
r. Referring to Figure 1, all of the step heights are approximately equal to r, again due to the original 
distribution of the jumps in the kj's used in generating S. We then use f to set two thresholds. The first is 
770 = 0.35f, used to define the neighborhood of zero in which data will be eliminated during each iteration. 
The second we take to be j/o = 0.6f, used to segment the steps at each iteration. The segmentation proceeds 
by searching for jumps in height greater than ya, and averaging over each segment. The choices of 0.35 
and 0.6 are based on extensive simulation experience, and have been more rigorously justified in specific 
cases. However, performance is reasonably robust to changes in these weights under the various scenarios 
considered. The averaging produces significant data reduction, and therefore greatly increases the speed of 
convergence. The gradient operator is applied only as part of the first iteration, the data reduces rapidly 
with each iteration and precludes use of the gradient operator except as part of the first iteration. 

We summarize the foregoing in the following algorithm statement. Again we assume the data is initially 
sorted in descending order. Recall that appending zero in the first step appends the previous minimum. 

Modified Euclidean Algorithm (With Averaging) 

1.) After the first iteration, append zero. 
2.) Form the new set with elements SJ — Sj+i. 
3.) Sort in descending order. 
4.) On the first iteration, apply gradient and obtain f, yielding 770 = 0.35f and y0 = 0.6f. 
5.) Average the data over each step, with steps determined by jumps of height y0. 
6.) Eliminate elements in [0,770] from end of the set. 
7.) Algorithm is done if left with a single element. Declare f = si. If not done, go to (1.). 

Further modifications can be found in [23]. The algorithms were tested extensively. Simulation results 
appear in [22] and [23], The algorithms perform quite well. 

The parameter estimation techniques described above lead to an effective method for periodic pulse 
interval analysis (see [41], [42]). We assume time is highly resolved and ignore any time quantization error. 
We are primarily concerned with a single periodic pulse train with (perhaps very many) missing observations 
that may be contaminated with outliers. Our data model for this case, in terms of the arrival times tj, is 
given by (1), with the additional assumption that rjj is zero-mean additive white Gaussian noise. Outliers 
are included in the data as phase-shifted multiples of another period. 

The problem, again, is to recover the period r and possibly the phase cj>. The minimum variance unbiased 
estimates for this linear regression problem take a least-squares form. However, this requires knowledge of the 
kj's. We therefore develop a multi-step procedure that proceeds by (i) estimating r directly, (ii) estimating 
the kj's, and (iii) refining the estimate of r using the estimated kj's in the least-squares solution.   This 



Figure 1 
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1. Plot of example data set after one iteration of the modified Euclidean algorithm of Section 2. 
The data is sorted in descending order into steps centered around multiples of r (r = 1 in this 
example). The stepwidths are a function of the distribution of the kj's in the original data set S. 
The lowest (rightmost) step is centered around the true value of r = 1. 



estimate is shown to perform well, achieving the Cramer-Rao bound in many cases, despite many missing 
observations and contaminated data. The direct estimate of r (step (i)) is obtained using the modified 
Euclidean algorithms described above. While not maximum-likelihood, the modified Euclidean algorithm 
performs well under difficult conditions. 

We now give the maximum likelihood solution and Cramer-Rao bounds for estimating r and (j). Our 
analysis has led us to work with the data set {tj+i — t,}™"/, so as to avoid estimating 4> (which can be 
unreliable). Given the sample data set S from (1) we may write 

(6) 

where kj+\ > kj. In compact form this is 
t = Xß + r), (7) 

where ß = [<f>, r]T and the definitions of t, 77, and X follow from (6).   We eliminate cj> by forming the 
differences yj = tj+i — tj = {kj+\ — kj)r + (T]J+I — r]j), yielding 

r h 1 ' 1 h 1 " m 
h 

— 
1 fc2 

r + 
m 

n _ 1 fcn .  Vn 

2/1 

V2 

Vn-1 

k2 - fci 

kz — &2 

"<n       "<n—1 

T + 

Si 
s2 

Sn-i 

(8) 

where 5j = rjj+i — rjj. Similar to (7) we may write (8) compactly as 

y = Xdr + S. (9) 

Equations (7) and (9) are linear regression problems whose least squares solutions yield the minimum- 
variance unbiased estimate when the noise is zero-mean Gaussian, e.g., see Kay [31]. Generally, use of (9) is 
preferred for estimating r, avoiding estimation of 4> which has high variance. The solution to (9) corresponds 
to maximum-likelihood estimation and takes the form of an least squares estimate 

T^iXlR^XaY^lR^y, (10) 

where Rg — E[SST]. We have assumed white noise so R$ = crfäs where Rs has 2's on the main diagonal, 
—l's on the first upper and lower diagonals, and zeros elsewhere. In general Rs is full rank and its inverse 
can be expressed element-wise as [RJ1]^ = mm(i,j) — ij/n, and is therefore easily computed. Although 
optimal, use of (10) requires knowledge of Xd. This is not a problem if there are no missing observations 
for then kj = j for j — 1,2, • • -n. However, when observations are arbitrarily missing then the fc/s are not 
known in general, and one is faced with more unknowns than equations in (9). 

The pdf of the observations t in (1) is multivariate Gaussian, leading to the Cramer-Rao bound for (10) 

yav{T~T}>a2
5(X

T
dRJlXd) -1 

(11) 

with ag = 2an. Generally, the Cramer-Rao bound is reduced for smaller a%. Also, for fixed n, it is reduced 
when the spread of the k/s increases. 

Now, if r were known then Xd could be estimated using (1/r) y. Ideally, this estimate is composed of 
positive integers, but imperfect knowledge of r and the presence of noise will generally yield an estimate of 
Xd that has non-integer components. We therefore estimate Xd via 

Xd = round 
TMEA 

(12) 



where ?MEA is the estimate of r obtained via the modified Euclidean algorithm, and round[-] = [• + |J is 

rounding to the nearest integer. A refined estimate of r is then obtained by using Xd in (10) yielding 

?={XZRl1Xd)-
1XZR;1y. (13) 

This result approaches the optimal minimum variance performance when Xd is close to Xd. The refinement 
algorithm is summarized as follows. 

Refined Estimation Algorithm 

1.) Estimate r via the modified Euclidean algorithm, calling this estimate TUEA- 

2.) Estimate Xd via (12). 
3.) Refine the estimate of r using Xd in (13), calling this estimate f. 

Performance analysis of the estimate TMEA depends not only on the distribution of the noise rfj, but 
also on the distribution of the kj's. We have completed this analysis for some specific cases in [41]. We 
also compare the estimates to Cramer-Rao bounds via Monte Carlo simulation, revealing the very good 
performance of the algorithm with many missing observations and contaminated data. These results can be 
found in [41], [42]. 

We can also apply our parameter estimation procedures to frequency estimation via sparse zero crossings. 
Estimation of the frequency of a single complex sinusoid in Gaussian noise is a fundamental problem in signal 
processing. We have addressed the problem [42, 44], using only very sparse noisy zero-crossings with the 
presence of outliers. The techniques presented in these papers require access to zero-crossing times only. 
The approach relies on the Tretter approximation, which is valid for high SNR (> 8 dB). This enables 
us to model the data as jittered zero-crossings, which in turn allows us to employ our modified Euclidean 
algorithms (MEAs) [23] and their least squares refinements [43] to the data. We estimate the (half-) period 
of a noisy sinusoid directly using the MEAs, which are methods for finding the greatest common divisor 
(gcd) of a noisy contaminated data set [23, 43]. This approach is motivated by the fact that, in the noise-free 
case, the gcd of a sparse set of the first differences of the zero crossing times is very highly likely to be the 
half-period of the sinusoid. We show that the method achieves a Cramer-Rao bound in a linear regression 
framework that arises naturally because of the high SNR assumption. Because the MEAs can successfully 
work with sparse data with jitter noise, this adds a new approach to solving zero-crossing problems that 
work when other methods break down. Moreover, given sufficient data, the proposed approach can tolerate 
outliers. We also note that our method can work even when the Tretter approximation does not hold. Our 
MEA with averaging identifies data in a tight cluster, and averages over these values. This has the effect of 
averaging the noise around the true value. We then employ the standard to this "averaged" data. 

The journal paper includes two (analytic and geometric) derivations of the Tretter approximation, i.e., 
if SNRS » 1 (high SNR), then 

s(n) = Aexpi(ujonT + <p) + z(n) « Aexp(i(wonT + cf> + ß(n))). 

We also develop bounds to show why this approximation works for SNRS > 8 dB . 
We have developed procedures for simple spectral analysis that combine filtering and number-theoretic 

based methods. The basic procedure is to first filter noisy time-series data, and extract zero-crossing data 
from the series. This data is then analyzed by using modifications of the Euclidean algorithm to isolate 
the fundamental period of the data, taking advantage of the fact that these algorithms are computationally 
straightforward, converge quickly, and are robust in. that they are stable despite the presence of noise and 
arbitrary outliers. This gives a procedure for performing a basic spectrum analysis on extremely noisy 
time-series data. 

We have also concentrated on the analysis of multiply periodic point processes [21, 24]. For these 
processes, we assume our data model is the union of M copies of (1), each with different periods, kmj's and 
phases. We also assume that the 77^,^- 's are zero-mean iid. We think of the data as being arrival times, and 



denote it by {5m,j}- Assuming only minimal knowledge of the range of {rm}, namely bounds TL, TU such 
that 0 < Ti < Tm < Tu, we phase wrap the data by the mapping 

$p(Sm,j) = 
_ "m,j Jm,j (14) 

where p £ [TL,TU], and |_-J is the floor function. Thus (•) is the fractional part, and so (^-) S [0,1). We 

prove for almost every choice of p (in the sense of Lebesgue measure) that $p(ömj) is essentially uniformly 
distributed in the sense of Weyl. Moreover, the set of p's for which this is not true are fractions of {rm}. 

We then map the phase wrapped data by non-linear variations on the periodogram, e.g., 

F(5, m,j,p) = ^2 COS21   X 

m,j 

(2jr^i; + 'E sin 21-1 (27T^i ). (15) 
m,j 

for? = 2,3,. We find 
max(3f?JF-|9fF|) 

p 

This isolates the most prolific of the rm
:s. We prove this result using our variation of Weyl's Theorem. We 

can then subtract out this data, and repeat. 
Our techniques have been applied to other data sets containing sparse noisy information generated by a 

periodic process, e.g., the geometric pattern generated by minefield placement [36], regularities in scheduled 
events, etc. The application to general time series data is straightforward. To detect regularities in a sparse, 
noisy lattice pattern (such as one gets from minefield data), we proceeded as follows. We first apply the 
Hough transform, which gives us one-dimensional data to analyze. This data is then processed by the 
modified Euclidean algorithm. The approach takes advantage of prior information on minefield spacing to 
eliminate points which are either spaced too closely or too far apart. This bounds are used to set thresholds 
in the ME A. 

This approach can be refined. The first improvement would be to employ the least squares refinements 
[43] to the MEA. Also, the low complexity of the algorithm would allow it to be a component of an iterative 
scheme, in which the estimate of d is refined relative the data. 

3    Multichannel Deconvolution 

Deconvolution is one of the most general inverse problems. Results in this area are extremely useful, in 
that they have immediate application to not only theoretical but also applied mathematics. The theory of 
deconvolution presented in this report is contained in a larger group of results in the theory of residues of 
analytic functions and their generalities, for example, intersection varieties. These results have appeared 
in a series of papers by Berenstein, Gay, Yger et al. (see [2] - [19]), and can be interpreted as results in 
division problems, interpolation of analytic functions, analytic continuation, digital to analog conversion, 
and complexity theory. For deconvolution and other applications to signal and image processing, the work 
focuses on solving the general analytic Bezout equation, i.e., for given holomorphic /* and tp, solving for 
holomorphic <& such that 

V> = /l ■ 91 + ■ ■ • + fn ■ 9n (16) 

In many situations, we want tp — i>\, with tj}\ —> 1 as A —> oo (tp\ is the transform of an approximate 
identity). Solutions to Bezout equations have yielded results in deconvolution, complexity theory, solutions 
to systems of PDE's, theorems about interpolation and continuation of analytic functions, and results in 
number theory (see [2] - [19]). We look to continue development of the general theory. However, in the 
context of this report, we have focused on the problem of deconvolution and application of the theory to signal 
and image processing. Our philosophy is that these specific results will still contribute to the development of 
the general theory, as the flow of ideas and results goes freely from theory to applications and back. Many of 
the Pi's results on the subject appear in [11] - "Systems of convolution equations, deconvolution, Shannon 
sampling, and the wavelet and Gabor transforms," SIAM Review 36 (4), pp. 537-577 (1994) - [12] - "Exact 



multichannel deconvolution on radial domains," IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP '97), Vol. 3, 1865-1868 (1997). - [13] - "Sampling techniques for multichannel 
deconvolution," 1997 International Workshop on Sampling Theory and Applications, 279-284 (1997). - [14] 
- "Modulation and sampling techniques for multichannel deconvolution," Journal of Inverse and Ill-Posed 
Problems, 8 (1), 1-41 (1998). Also see [15, 16, 17, 18, 19]. 

Linear, translation-invariant systems are modeled as follows. Assuming system impulse response function 
fi, they are represented by the convolution equation s = / * \i. The output s may be an inadequate 
approximation of /, which motivates solving the convolution equation for /, i.e. deconvolving / from JJ,. If the 
function ß is time-limited (compactly supported) and non-singular, this deconvolution problem is ill-posed. 
A theory of solving such equations has been developed. It circumvents ill-posedness by using a multichannel 
system. If we overdetermine the signal / by using a system of convolution equations, Si = f*pi , i = 1,... ,n, 
the problem of solving for / is well-posed if the set of convolvers {^,} satisfies the strongly coprime condition. 
In this case, there exist compactly supported distributions (deconvolvers) Vi , i = l,...,n which solve 
1 = fii • v\ + ... + ßn ■ vn, the Bezout equation. Transforming, we get 5 = ß\ * v\ + ... + fJ,n * vn, which 
in turn gives f — si * vi + ... + sn * vn. The development of strongly coprime systems rests on a special 
non-overlapping alignment of the zeros of {fii}, given as a number theoretic condition. The mutichannel 
systems are analogous to systems of relatively prime congruences. 

We have continued the development of the theory. Particular items include: 

i.) Extended the theory to convolvers which can be modeled by B-splines [18] and those systems (e.g., 
optical) which work in radial domains [12]. In particular, we now can apply the theory in general 
imaging systems (e.g., for sub-pixel resolution), medical imaging (e.g., strongly coprime x-ray systems), 
radar (e.g., strongly coprime chirp pulses), etc. Using duality, we can also use the theory to create 
filters. 

ii.) Developed a basis in which to develop the multichannel theory which is more amenable to discretization 
[18]. 

iii.) Coordinated the theory with filtering systems for the removal of noise and/or other unwanted infor- 
mation. This was achieved by combining multichanel deconvolution with Wiener filtering [13, 19]. 

iv.) Used the theory as a model for developing new sampling schemes. Solutions to the analytic Bezout 
equation associated with certain multichannel deconvolution problems are interpolation problems on 
unions of non-commensurate lattices. These solutions provide insight into how we developed general 
sampling schemes on properly chosen non-commensurate lattices. We have developed specific examples 
of non-commensurate sampling lattices, and used a generalization of B. Ya. Levin's sine-type functions 
to develop interpolating formulae on these lattices [17]. We are exploring an extension of these ideas 
to create non-commensurate systems of wavelet bases. 

The work on multichannel deconvolution is certainly a new perspective on this class of inverse problems. 
Items (i.) - (iii.) provide a theoretical basis for multichannel systems in signal and image processing. This 
work is indirectly applicable to Navy technologies in that it provides an outline for the development of active 
and passive remote sensing systems which gather all possible information, new techniques for making filters, 
etc. The multichannel approach turns ill-posed problems into well-posed ones, and provides a framework for 
solution by linear methods. Moreover, the success of our simulation work gives proof that it would not be 
difficult to develop actual multichannel systems. The sampling schemes [17] also provide a theoretical basis 
for extending bandwith. This may be useful in, for example, A to D conversion systems. 

4    A Direct Yet Fundamental Result on Derivatives 

The paper When Does a Positive Derivative Guarantee Monotonicity? (Some New Thoughts on the Classical 
Theory), [20], discusses one of the most fundamental and useful results from calculus. It is well known that 
if a function / is differentiate with positive derivative Df on an interval, then it is increasing there. If we 
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assume / is continuous on [a,b] and differentiable on (a, 6), then the result follows directly from the Mean 
Value Theorem. The paper asks about generalizations of this result. In particular, we obtain, given certain 
assumptions, the most straightforward yet most general theorem possible. We assume throughout the paper 
that all of the functions considered in connection to the investigation are continuous. If we do not assume 
continuity, we can vary behavior at a single point, thus easily changing monotonicity. The work boiled down 
into answering two questions. 

If we weaken the hypotheses of the Mean Value Theorem, 
does Df > 0 imply that / is increasing ? 

As one would expect, the answer to our first question is no. To. see this, we assumed, in addition to 
continuity, only that Df > 0 almost everywhere (a.e.), i.e., except on a set of Lebesgue measure zero. This 
condition was too weak, for we construct counterexamples to show that the assumption Df > 0 a.e. does 
not imply that / is increasing. 

We develop our counterexamples using the Cantor-Lebesgue function C, which is defined as follows. Let 
C denote the Cantor middle thirds set, and for x G [0,1], consider its ternary expansion x = Y^?=i §£• Let 

n — n(x) 

Then 

min{fc : Ofc = 1}    if x £ C 
oo if x G C. 

n—1 1 

C is a continuous not strictly monotone increasing function on [0,1] with C(0) = 0 and C(l) = 1 that has 
zero derivative except on the Cantor set, i.e., DC = 0 o.e. 

We can now construct our example. Let 

/(s) = f+C(l-a;). 

Then / is a continuous mapping on [0,1] with Df = \ a.e. However, /(0) = 1 > \ — /(l). The function / is 
not increasing. Here, the "risers" of the Cantor-Lebesgue function, which occur over the Cantor middle-thirds 
set, allow the function / to "flow" against the derivative. Measure zero gives too much room, allowing for 
this flow. We can, of course, produce other such functions, such as, for fixed a G (0,1), fa(x) = ax+C(l — x) 
and ga(x) = ax — C(x). 

This naturally led us to our second question. 

Assuming that / is continuous on [a, b] and differentiable on (a, b) a.e., 
what is the weakest additional condition we can impose on Df 

which guarantees that / is monotone increasing ? 

If we assume that the set on which the hypotheses fail is countable, we prove the following. We refer to 
this as the Countable Exceptional Set Theorem. 

Theorem 4.1 Let f be a continuous function on [a, b] and suppose that Df > 0 on [a, b] \ S, where S is 
countable. Then f(a) < f(b). 

A reading of Saks' classic treatise Theory of the Integral gives that this result is generalized by the 
Goldowsky-Tonelli Theorem. (Also see Kannan and Krueger's Advanced Analysis on the Real Line.) 

Theorem 4.2 (Goldowsky-Tonelli) Let f be a continuous function on [a, b] and suppose that Df exists 
(finite or infinite) on [a,b] \ S, where S is countable. Also suppose that Df > 0 a.e. on [a,b\. Then f is a 
non-decreasing function on [a, b]. 



We give a new proof of Goldowsky-Tonelli in our paper. This still, however, does not answer our second 
question. 

We give a surprising answer in [20]. We show that, in a very natural sense, Theorem 4 is the best 
possible result. Goldowsky-Tonelli is a vacuous extension of the Countable Exceptional Set Theorem, in 
that there are no additional functions to which Goldowsky-Tonelli applies but Countable Exception does not 
apply, Goldowsky-Tonelli, however, requires less information. Given a function satisfying the hypotheses 
of Goldowsky-Tonelli, one needs Goldowsky-Tonelli to show that it satisfies the hypotheses of Countable 
Exception. We develop our proof by proving the next two theorems, and using a classical result of Alexandroff 
and Hausdorff. 

Theorem 4.3 If g is continuous and the set of points where Dg is not positive (or fails to exist) does not 
contain a perfect set, then g is non-decreasing. However, for any set that does contain a perfect set, there 
are counterexamples. 

Theorem 4.4 The set of points where a continuous function fails to have a positive derivative is a Borel 
set. 

Theorem 4.5 (Alexandroff and Hausdorff) Any uncountable Borel set contains a perfect set. 

Putting these theorems together, we show that, in fact, Theorem 4 is best possible. There is no condition 
between countable and measure zero that guarantees monotonicity. 
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Vol. 3, 1865-1868 (1997). 

2. Casey, S. D., "Sampling techniques for multichannel deconvolution," 1997 International Workshop on 
Sampling Theory and Applications, 279-284 (1997). 

3. Casey, S. D., "Modulation and sampling techniques for multichannel deconvolution," Journal of Inverse 
and Ill-Posed Problems, 8 (1), 1-41 (1998). 

4. Casey, S. D., "Sampling issues in least squares, Fourier analytic, and number theoretic methods in 
parameter estimation," 31st Annual Asilomar Conference on Signals, Systems, and Computers, 453- 
457 (1998). 

5. Casey, S. D., "New classes of Berenstein deconvolvers and their applications to filter design," 46 pp., 
preprint. 

6. Casey, S. D., "Optimal multichannel deconvolution in a noisy environment: deconvolving Wiener 
filters," 28 pp., preprint. 

7. Casey, S. D., and Holzsager, R. A., "When does a positive derivative guarantee monotonicity?" sub- 
mitted to The American Mathematical Monthly, 17 pp. (1998). 

8. Casey, S. D., Berenstein C. A., and Walnut, D. F., "Systems of convolution equations, deconvolution, 
Shannon sampling, and the wavelet and Gabor transforms," invited research monograph for SIAM 
Monographs on Mathematical Modeling and Computation (in progress). 

9. Casey, S. D., Berenstein C. A., and Walnut, D. F., "Exact multichannel deconvolution," invited survey 
article for Advances in Imaging and Electron Physics (in progress). 

10. Casey, S. D., and Walnut, D. F., "Sampling on unions of non-commensurate lattices via real and 
complex interpolation theory," invited article for research monograph on sampling theory in Birkhauser 
Research Monographs (in progress). 

11. Lake, D., Sadler, B., and Casey, S., "Detecting regularity in minefields using collinearity and a modified 
Euclidean algorithm, Proc. SPIE, 3079, 8 pp. (1997). 

12. Sadler, B. M., and Casey, S. D., "On periodic pulse interval analysis with outliers and missing obser- 
vations," to appear in IEEE Transactions on Signal Processing, 31 pp. (1998). 

13. Sadler, B. M., and Casey, S. D., "Frequency estimation via sparse zero crossings," submitted to IEEE 
Transactions on Signal Processing, 11 pp. (1998). 
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1. 1998 American University Faculty Award for Outstanding Teaching. 

11 



References 

[1] Bartlett, M. S., "The spectral analysis of point processes," Journal of the Royal Statistical Society B, 
25 (2), 264-280 (1963). 

[2] Berenstein, C. A., and Yger, A., "Effective Bezout identities in Q[zi,.. .,zn}" Ada Mathematica 166, 
69-120 (1991). 

[3] Berenstein, C. A. and Yger, A., "Analytic Bezout identities," Advances in Mathematics 10, 51-74 
(1989). 

[4] Berenstein, C. A., Gay, R., and Yger A., "Inversion of the local Pompeiu transform," J. Analyze 
Math. 54, 259-70 (1990). 

[5] Berenstein, C. A., and Yger, A., "Le probleme de la deconvolution," J. Fund. Anal. 54, 113-60 
(1983). 

[6] Berenstein C. A., Yger, A., and Taylor, B. A., "Sur quelques formules explicites de deconvolution," 
Journal of Optics (Paris) 14, 75-82 (1983). 

[7] Berenstein C. A., and Patrick, E. V., "Exact deconvolution for multiple convolution sensors-an 
overview plus performance characterizations for imaging sensors," Proceedings of the IEEE (Special 
Issue on Multidimensional Signal Processing), 78 (4), 723-34 (1990). 

[8] Berenstein C. A., Patrick, E. V., and Casey, S. D., "Systems of convolution equations, deconvolution, 
and wavelet analysis," Systems Research Center whitepaper, 25 pp. (1991). 

[9] Bloomfield, P., "Spectral analysis with randomly missing observations," Journal of the Royal Statis- 
tical Society B, 32 (3), 369-380 (1970). 

[10] Casey, S. D., "Deconvolution and Gabor and wavelet signal analysis," Proceedings of the EFTF, 
262-274 (1991). 

[11] Casey, S. D., and Walnut, D. F., "Systems of convolution equations, deconvolution, Shannon sampling, 
and the wavelet and Gabor transforms," SI AM Review 36 (4), 537-577 (1994). 

[12] Casey, S. D., Berenstein C. A., and Walnut, D. F., "Exact multichannel deconvolution on radial 
domains," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), 
Vol. 3, 1865-1868 (1997). 

[13] Casey, S. D., "Sampling techniques for multichannel deconvolution," 1997 International Workshop on 
Sampling Theory and Applications, 279-284 (1997). 

[14] Casey, S. D., "Modulation and sampling techniques for multichannel deconvolution," Journal of In- 
verse and Ill-Posed Problems, 8 (1), 1-41 (1998). 

[15] Casey, S. D., Berenstein C. A., and Walnut, D. F., "Systems of convolution equations, deconvolution, 
Shannon sampling, and the wavelet and Gabor transforms," invited research monograph for SIAM 
Monographs on Mathematical Modeling and Computation (in progress). 

[16] Casey, S. D., Berenstein C. A., and Walnut, D. F., "Exact multichannel deconvolution," invited survey 
article for Advances in Imaging and Electron Physics (in progress). 

[17] Casey, S. D., and Walnut, D. F., "Sampling on unions of non-commensurate lattices via real and 
complex interpolation theory," invited article for research monograph on sampling theory in Birkhauser 
Research Monographs (in progress). 

[18] Casey, S. D., "New classes of Berenstein deconvolvers and their applications to filter design," 46 pp., 
preprint. 

12 



[19] Casey, S. D., "Optimal multichannel deconvolution in a noisy environment: deconvolving Wiener 
filters," 28 pp., preprint. 

[20] Casey, S. D., and Holzsager, R. A., "When does a positive derivative guarantee monotonicity?" 
submitted to The American Mathematical Monthly, 17 pp. (1998). 

[21] Casey, S. D., "Sampling issues in least squares, Fourier analytic, and number theoretic methods in 
parameter estimation," 31st Annual Asilomar Conference on Signals, Systems, and Computers, 453- 
457 (1998). 

[22] Casey, S. D., and Sadler, B. M., "A modified Euclidean algorithm for isolating periodicities from 
noisy data," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 
'95), Vol. 3, 1764-1767 (1995). 

[23] Casey, S. D., and Sadler, B. M., "Modifications of the Euclidean algorithm for isolating periodicities 
from a sparse set of noisy measurements," IEEE Transactions on Signal Processing, 44 (8), 2260-2272 
(1996). 

[24] Casey, S. D., and Sadler, B. M., "Number theoretic methods in parameter estimation," Proceedings 
of IEEE Workshop on Statistical Signal and Array Processing, 406-409 (1996). 

[25] Finette, S., and Mignerey, P., "Multichannel deconvolution of an acoustic transient in an oceanic 
waveguide," Jour. Acoustical Soc. 92 (1), 351-364 (1992). 

[26] Hörmander, L., The analysis of linear partial differential operators I (distribution theory and Fourier 
analysis), second edition, Springer-Verlag, New York (1990). 

[27] Hörmander, L., "Generators for some rings of analytic functions," Bull. American Math. Soc, 73, 
943-949, (1967). 

[28] Ireland, K., and Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New 
York (1982). 

[29] Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, New Jersey (1989). 

[30] Jones, R. H., "Spectral analysis with regularly missed observations," Annals of Mathematical Statistics 
33 455-461 (1962). 

[31] Kay, S. M., Fundamentals of Statistical Signal Processing, Prentice-Hall, New Jersey (1993). 

[32] Kay, S. M., and Sudhaker, R., "A zero crossing-based spectrum analyzer," IEEE Transactions on 
Acoustics, Speech, and Signal Processing 34 (1), 96-104 (1986). 

[33] Kedem, B., Time Series Analysis by Higher Order Crossings, IEEE Press, New York (1994). 

[34] Knuth, D. E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Second 
Edition), Addison-Wesley, Reading, Massachusetts (1981). 

[35] Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 
Reading, Massachusetts (1973). 

[36] Lake, D., Sadler, B. M., and Casey, S. D., "Detecting regularity in minefields using collinearity and a 
modified Euclidean algorithm, Proc. SPIE, 3079, 8 pp. (1997). 

[37] Leveque, W. J., Topics in Number Theory, Volumes 1 and 2, Addison-Wesley, Reading, Massachusetts 
(1956). 

[38] Papoulis, A., Signal analysis, McGraw-Hill, New York (1977). 

13 



[4ÜJ Parzen  E    "D ^«i, 

I«) Sadler, B. M., and Casey S D   «PUT      . 
**> Annual Asilomar ft^,™ f*™ <™> »Parse data via a modified EnH'd , 

W M, B. M„ and Case, S D^ '   &' **"* ^ C~ pÄr«^" 

[43] Sadler, B. M., and Casey, S D   »On n   • ,• ^      ' 5' 299°-2993 (1996). 

[45J Schroeder, M R    /VW,A    ™ 

f49J Wiley, R. G., Electwnic Inm " *° ^ 

Norwood, Massachusetts (1993) ^ "" Ana*» 'f**r Si9nals (Second Edition), Artech House, 

14 


